Species-dependent changes in stomatal sensitivity to abscisic acid mediated by external pH.
نویسندگان
چکیده
The direct effects of pH changes and/or abscisic acid (ABA) on stomatal aperture were examined in epidermal strips of Commelina communis L. and Arabidopsis thaliana. Stomata were initially opened at pH 7 or pH 5. The stomatal closure induced by changes in external pH and/or ABA (10 microM or 10 nM) was monitored using video microscopy and quantified in terms of changes in stomatal area using image analysis software. Measurements of aperture area enabled stomatal responses and, in particular, small changes in stomatal area to be quantified reliably. Both plant species exhibited a biphasic closure response to ABA: an initial phase of rapid stomatal closure, followed by a second, more prolonged, phase during which stomata closure proceeded at a slower rate. Changes in stomatal sensitivity to ABA were also observed. Comparison of these effects between C. communis and A. thaliana demonstrate that this differential sensitivity of stomata to ABA is species-dependent, as well as being dependent on the pH of the extracellular environment.
منابع مشابه
Linking Turgor with ABA Biosynthesis: Implications for Stomatal Responses to Vapor Pressure Deficit across Land Plants1[OPEN]
Stomatal responses to changes in vapor pressure deficit (VPD) constitute the predominant form of daytime gas-exchange regulation in plants. Stomatal closure in response to increased VPD is driven by the rapid up-regulation of foliar abscisic acid (ABA) biosynthesis and ABA levels in angiosperms; however, very little is known about the physiological trigger for this increase in ABA biosynthesis ...
متن کاملLinking Turgor with ABA Biosynthesis: Implications for Stomatal Responses to Vapor Pressure Deficit across Land Plants.
Stomatal responses to changes in vapor pressure deficit (VPD) constitute the predominant form of daytime gas-exchange regulation in plants. Stomatal closure in response to increased VPD is driven by the rapid up-regulation of foliar abscisic acid (ABA) biosynthesis and ABA levels in angiosperms; however, very little is known about the physiological trigger for this increase in ABA biosynthesis ...
متن کاملModification of leaf apoplastic pH in relation to stomatal sensitivity to root-sourced abscisic acid signals.
The confocal microscope was used to determine the pH of the leaf apoplast and the pH of microvolumes of xylem sap. We quantified variation in leaf apoplast and sap pH in relation to changes in edaphic and atmospheric conditions that impacted on stomatal sensitivity to a root-sourced abscisic acid signal. Several plant species showed significant changes in the pH of both xylem sap and the apopla...
متن کاملAugmentation of abscisic acid (ABA) levels by drought does not induce short-term stomatal sensitivity to CO2 in two divergent conifer species
The stomata of conifers display very little short-term response to changes in atmospheric CO(2) concentration (C(a)), whereas the stomatal responses of angiosperms to C(a) increase in response to water stress. This behaviour of angiosperm stomata appears to be dependent on foliar levels of abscisic acid (ABA(f)). Here two alternative explanations for the stomatal insensitivity of conifers to C(...
متن کاملModulation of Root Signals in Relation to Stomatal Sensitivity to Root-sourced Abscisic Acid in Drought-affected Plants
Stomatal sensitivity to root signals induced by soil drying may vary between environments and plant species. This is likely to be a result of the interactions and modulations among root signals. As a stress signal, abscisic acid (ABA) plays a central role in root to shoot signaling. pH and hydraulic signals may interact with ABA signals and thus, jointly regulate stomatal responses to changed s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of experimental botany
دوره 57 3 شماره
صفحات -
تاریخ انتشار 2006